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ABSTRACT

The problem of health and care of people is being revolutionized. An important component of that revolution is disease prevention and health
improvement from home. A natural approach to the health problem is monitoring changes in people’s behavior or activities. These changes can
be indicators of potential health problems. However, due to a person’s daily pattern, changes will be observed throughout each day, with, eg, an
increase of events around meal times and fewer events during the night. We do not wish to detect such within-day changes but rather changes in
the daily behavior pattern from one day to the next. To this end, we assume the set of event times within a given day as a single observation. We
model this observation as the realization of an inhomogeneous Poisson process where the rate function can vary with the time of day. Then, we
propose to detect changes in the sequence of inhomogeneous Poisson processes. This approach is appropriate for many phenomena, particularly
for home activity data. Our methodology is evaluated on simulated data. Overall, our approach uses local change information to detect changes
across days. At the same time, it allows us to visualize and interpret the results, changes, and trends over time, allowing the detection of potential

health decline.
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1 INTRODUCTION

This paper is part of a vision to revolutionize health and care in
the community for 2050 (QUEST, 2024). When imagining the
community settings and homes of 2050, we envisage multiple
sensors and media features in our smart environment. Data will
be collected on alarge scale, at different frequencies (eg, seconds
or minutes), and from different sources; some of these are being
collected now. Statistical methods are required to analyze these
complex and large datasets. There are several different types of
sensors and goals for statistical analysis of these sensors. Some
recent work includes Wifi disturbances (Usman et al., 2022), fa-
tigue using RF sensing (Cooper et al,, 2024), vital sign using
radar (Elsayed et al., 2024), and changes in gait (Austin et al.,
2011)—all using passive sensing.

One type of data in the sensing context is a collection of ran-
dom event times, known as temporal point process: N(t) =
Z;‘zl 1it,;<t), where {t;} are the event times, and N(t) repre-
sents the total number of events up to time ¢ (see, eg, Badde-
ley, 2007). The most commonly used point process is the tem-
poral Poisson process, which is characterized by the mean mea-
sure A(t) = %[E{N (t)}, where A(t) is known as the intensity
function. Loosely speaking, A (t ) represents the probability that
there will be an event within a “small” time interval [¢, t + dt].
If this function is not constant over ¢, then the Poisson process
is known as an inhomogeneous Poisson process (IHPP). Here,
we propose a novel statistical methodology to detect changes in

event times using a new paradigm of data analysis. Specifically,
we propose a changepoint methodology for a sequence {N;(t)}
of IHPPs, where each N; is defined on a specific period of time
(eg,24h).

Our proposal is motivated by home activity data provided by
Howz (2024). The company collects data on household activi-
ties of older people. The dataset consists of a collection of times,
representing activities performed by a household, eg, using the
kitchen, walking through the hallway, and opening the back
door, see top left plot of Figure 1. The rate of events will vary
throughout each day due to a household’s daily pattern, with, eg,
fewer events during the night, and increases around meal times.
Notice that these within-day changes are part of the regular rou-
tines. We do not wish to detect such changes, but rather changes
in the daily behavior pattern from one day to the next. For
example, from the top left plot of Figure 1, we observe the same
behavior (no “change”) between days 1 and 2. In contrast, there
appears to be a change between days 2 and 6. On day 6, activities
start hours later than on day 2. Similarly, day 6 and day 36 vary.
These across-day changes are more informative than the within-
day changes in monitoring people’s health. To that end, we treat
the set of event times on a given day as a single observation. That
is, for each day i, the process N;(¢), t € [0, 24] is assumed to be
a single observation and represents the data for day i. We model
this observation as a realization of an IHPP whose rate function
can vary with the time of day. Figure 1, top right plot, shows all
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FIGURE 1 Example of our proposal with Howz data. The top left plot shows six periods of event times. The top right plot shows the complete
sequence of IHPPs. Finally, we seek to partition i into consecutive regions and obtain a segmentation of {N;}, as shown in the second row of the

plot. Each segment should correspond to a specific intensity function.

realizations of N; with the Howz data. We then wish to detect
changes in this sequence {N;} of processes. Specifically, if N; and
Ni4 arerealizations of the same process, then there is no change.
In contrast, there will be a change if they are realizations from
two different processes. This induces a segmentation of {N;},
as shown in the bottom plot of Figure 1, where each segment
represents realizations of the same IHPP. Overall, our proposed
methodology uses a concept similar to functional data analysis.

To the best of our knowledge, this is the first paper to propose
detecting changes in the sequence {N;} of temporal processes.
Previous research studied changes on the IHPP defined on the
total time interval where the events are observed, ie, t € [0, T],
where T represents the total observation time (eg, 1 month or
1 year). In the latter framework, Shen and Zhang (2012), Cher-
noyarov et al. (2018), Ng and Murphy (2019) all propose meth-
ods with slight variations in assumptions or fitting methods.
Most of the research papers put changepoints within the inten-
sity function A(t). For example, for a single change point, it is
assumed that A(t) has the form A(t) = AV (1)1{0 <t < 1;}
+1®)(#)1{r, < t < T}. That is, time is linear or a univariate
vector. However, in many phenomena, linear changes may not
indicate a change in the process itself (noted above).

In summary, this paper proposes a new methodology for de-
tecting changepoints in a sequence of IHPPs. We consider each
period (day) to be an observation from an IHPP. The corre-
sponding intensity functions are modeled nonparametrically us-
ing finite basis functions. Taking advantage of this low-rank rep-
resentation, we use a penalized cost approach to detect change-
points.

The remainder of our paper is organized as follows: In Sec-
tion 2, we present our methodology and the changepoint model.
Then, in Section 3, we describe how to estimate the locations and
the number of changepoints. Also, we describe how to model
and estimate the intensity functions. In Section 4, we conduct
a simulation study to evaluate the performance of the proposed
methodology. We evaluate the accuracy of detecting change-
points and the accuracy of changepoint locations under differ-
ent simulation settings. In Section S, we analyze sensor data of
the daily activities of a household. In Section 6, we present some
discussion.

2 METHODOLOGY

In this section, we detail our proposed method to detect change-
points for event observations.

2.1 Preliminaries

Assume that we observe events at times0 < t;, ..., fywitht; <

. < t; < §intheinterval [0, §], where § represents the dura-
tion of a specific period, eg, 24 h. We assume that the cumulative
count events over time is a realization of an IHPP with intensity
function A : [0, 8] — R*. Thatis, N(t) := max{j : t; < t}is
arealization ofan IHPP on [0, 8 ]. With this assumption, for each
t € [0, 8], N(t) is a random variable representing the random
number of points observed in the interval [0, t], and N(¢) is
Poisson distributed with mean f Ot Au)du.

Now, assume that we observe time events for several periods.
Let n be the total number of periods (eg, the total number of

$20Z JaquiaAoN 0 uo Jasn 1da( sjelss Aq 250628./1 1 L oeln/p/0g/a0nie/souawold/woo dno olwapese//:sdiy Woll papeojumo(]



days) for which we have data. Then, our data are the sequence
of IHPPs {N;(t) : t € [0,8],i=1,...,n}, with correspond-
ing intensity functions {A;(t) : t € [0,8],i=1, ..., n}. No-
tice that the counting process N; only represents events for pe-
riod i. Figure 1, top right, illustrates realizations of {N;}.

2.2 Model definition

‘We now seek to partitioni = 1, ..., ninto consecutive regions.
Each segment will be represented by one intensity function. This
is, {N;} will be grouped by assuming that they are realizations
from the same underlying IHPP.

For i < j, we denote by N;; the set of observed pro-
cesses from index i to j, ie, Nj;j = {Nj, ..., N;}, where N;; =
{N;}. Our model contains m changepoints at positions Ty., =
(t1, ..., ) with 1) < 7, < ... < T,. The changepoint vec-
tor Ty, isasubsetof (1,2, ..., n— 1). These m changepoints
split the data into m + 1 segments. Let 79 := 0 and 7,4, :=
n, the kth segment contains the trajectory of the processes
N(z, ,+1)m k=1, ..., m+ 1. The statistical problem is esti-
mating the number of changepoints m and their locations.

For data that are scalars, several methods exist to estimate
multiple changepoints. One approach is to combine a single
changepoint identification method with a binary search (Scott
and Knott, 1974). This iteratively applies the method to dif-
ferent subsets of the data. This has a cheap computational cost
O(nlogn) but does not guarantee to find the optimal solution
(Eckley et al., 2011). An alternative approach is to minimize a
cost function for m changepoints. An exhaustive search guar-
antees the optimal solution but involves considering 2"~ so-
lutions, which is computationally challenging. Recent dynamic
programming algorithms have been proposed to overcome this
challenge, see, eg, Killick et al. (2012), and Maidstone et al.
(2017). Here, we extend the exact search approach from (Killick
etal, 2012), to the sequence of IHPPs {N;}.

3 ESTIMATION METHOD

To estimate the number and locations of changepoints, we have
to specify the parameter space for the intensity functions, A;, i =
1, ..., n. We describe the estimation method for these before
discussing how to estimate the number, m and locations, T, of
changepoints.

3.1 Model for the intensity function
To ensure that A; takes values in R™, we assume that A;(t) =
exp{W;(t)}, where W; are elements of a space H of functions de-
fined on the compact interval [0, §]. The functions A; describe
how events occur in the time interval [0, §], so we would like
to model them with minimal restrictions to capture any possi-
ble structure. We use a nonparametric approach. Notice that A,
(or W;) are defined in an intrinsically infinite-dimensional space,
making the estimation procedure challenging. To overcome this
challenge, we represent each unknown function W; as a linear
combination of known basis functions. Here, we use cubic B-
spline basis function because of its ability to representlocal prop-
erties and their numeral properties, although other basis func-
tions could equally be used. The number of knots determines
the number of the B-spline basis functions. Let 0 = f; = - - - =
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fy <ts<...<tp<tpy = --=tpy4 =38 be the knots in
[0, 8]. The number of basis functions will be P. The knot place-
ment will depend on the problem being studied, the most com-
mon approaches used are the quantile-based and the equally-
spaced knots (Ruppert et al,, 2003). For our application, we use
the quantile-based method, and thisis fixed foralli =1, ..., n.
Lety(t) = (Y1(t), ..., ¥p(t)) be the associated B-spline ba-

sis. Thus, we represent each function W; as

P
Wit) =Y wuir,(t) = w, P (t), (1)
p=1

where w; is the vector weights. This low-rank representation is
widely used in many contexts, such as functional data analysis,
and it can represent complicated shapes of the intensity func-
tion. The vector weights w; are obtained using the maximum
likelihood estimation method by optimizing (3) below. With the
model (1) for a single period i, we consider how to discriminate
between different N; acrossi =1, ..., n.

3.2 Penalized costapproach

The penalized cost approach has two components: a cost func-
tion C(N,-:,-) associated with a segment of data N, i < j, and
a penalty term B to prevent overfitting. In practice, the com-
mon cost functions used are the square-error-loss function (see,
eg, Lavielle and Moulines, 2000), cumulative sums (see, eg, In-
clén and Tiao, 1994), and minus twice the log-likelihood (see,
eg, Horvath, 1993). For f, the most common choices include
Schwarz information criterion (SIC; Schwarz, 1978) and mod-
ified Bayesian information criterion (MBIC; Zhang and Sieg-
mund, 2007). Then, the penalized cost function for a segmen-
tation is defined as
m+1
Q(Niyi Tr) = ) {C(NGr 4ny) +B) (2)
k=1
where B > 0 is the penalty by introducing a changepoint into
the model.

Since {N;} is a sequence of IHPPs, we use the negative log-
likelihood as the cost function. In this case C(N(7, , 1)) =
— max;, log L(N(y, ,11).r,|A), where L is the likelihood of the
sequence N(;,  1).,. For a segment, assume the processes
N; within are independent and identically distributed. Then,
C(N(z, ,+1):r,) = min, ZIZTH_H v (N;; A), where y is minus
the log-likelihood of an IHPP defined in [0, §].

Let A be the intensity function of the underlying IHPP for the
kth segment. Let us assume that W; has the form (1). Then,

P

s
v (N;; )\k):/ exp pr,k!ﬁp(t) dt
0

p=1

A 3)

j=1 p=1

where n; is the number of events observed in [0, §] for process
N, and {t;, ..., t;, } are the corresponding intraperiod times
where events are observed. Thus, the cost for segment k is ob-
tained by minimizing the summation of (3) on the index i =
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Ti—1 + 1, ..., 7. Explicitly,

5 P
CNiy iiye) = (T — Ticr) / exp | S Tty (6) b e
0 =1

Y S Y man), @

=t +1 j=1 p=1

where fv\p,k is such that log/):k (t) = Wle/I(t) is the intensity
function that minimizes the sum of the loss functions for the
kth segment. Similarly, A (¢) is the “best” intensity function that
represents the data from segment k. So each segment has an es-
timated intensity/)tk (t).
To estimate the number and location of changepoints, we min-
imize (2):
min Q(Nl:n; Tl:m) (5)

1<t <..<7,<n—1

Note this minimization is over all possible changepoints and can
be computationally challenging. We adopt the PELT method to
overcome this challenge, as described in the following.

3.3 Minimizing the penalized cost
To minimize the cost function (5), we adopt the PELT method
(Killick et al,, 2012); a modification of the optimal partitioning
(OP) procedure (Jackson et al., 2005).

The basis of OP method is a recursion for the minimum cost of
segmenting the sequence of data N4, withq < n.LetS; = {7 :
0=17 <7 <...<Ty < Tpuy1 = q} be the set of all possi-
ble changepoint vectors for data N.;. Let F (q) be the associ-
ated cost of the solution on(Nl:q, 7),and define F(0) = —8.
Then, we have that

P(‘I) = ?égl |:Z {C(N(Tk—r"l):‘[k) + :3}:|

k=1
= ;g}gq {F(P) + C(Np+1:q) + :3} . (6)

Thus, to obtain the minimal cost for the data N ,;, one minimizes
over all possible values for the most recent changepoint prior to
g. Although this recursion reduces the computational cost from
0(2") to O(n?), it is still challenging for large datasets. To gain
computational advantages, we adopt the PELT method whose
key idea is to discard values of p that cannot never be a minimum
in (6). The condition of discarding a candidate changepoint is as
follows.

Let p<g<r be three time points. Assume that

C(N(p+1):q) + C(N(q+1):r) = C(N(p+1):r)'lf

the candidate p can never be the optimal last changepoint prior
to r. Thus, if (7) holds, pis discarded in (6) for all indices larger
than g. This can reduce the computational cost significantly; if
changepoints occur regularly the computational cost is O(n).
Finally, the recursion (6) is solved using the pruning step for
g=1,...,n, and thus we obtain F(n), the minimum value
of (2). The set of changepoints at F(n) is the estimator of
the changepoint positions within the data. Despite the prun-

ing, PELT remains an exact optimization method. Thus an ex-
haustive search and PELT would return the same solution but
PELT would complete the optimization orders of magnitude
faster [O(n) verses O(2")].

3.4 Selecting P

Notice that P, number of basis functions, is fixed across all seg-
ments, and it is assumed to be known in all the above equations.
In practice, the value of P needs to be defined. This is a chal-
lenge, and it depends on the data. For some basis functions, it
is possible to set P = 1 and consider a constant basis function,
implying that the Poisson process is homogeneous. One way to
select P is using AIC. For a given P, estimate individual inten-
sity functions A;,i = 1, ..., n,via maximum likelihood and (1).
Obtain the average AIC values over n, AIC(P). Now, repeat this
process, varying P, and set P= minpA/I\C(P). On average, this
should accurately represent the intensity functions. Then, esti-
mate changepoints using P.

4 SIMULATION STUDY

We investigate the performance of our proposed method,
NHPP-PELT, under different scenarios. First, we assess the ac-
curacy of detecting the presence of changepoints; summarizing
the results using the ROC curves. Second, we demonstrate the
accuracy of estimating the changepoint positions. For each sce-
nario, we use cubic splines to represent the intensity function
and we compute the average number of correctly estimated and
falsely detected {7;}. Histograms of 7; values and boxplots of m
values are provided. Additional simulation results for data gener-
ated with an ETAS model can be found in the Web Appendix B.2.

4.1 Simulation setting

We simulate data as a sequence of IHPPs with m
changepoints:  Ni(t),..., Ny (), Ngii(t),..., Ny, (t),
coo s Ng 11(t), ... Nu(t), t € [0,24]. The m changepoints
represent changes in the intensity functions across days. Thus,
we define m + 1intensity functions {Ao(t), A;(£), ..., A, ()},
and Ny 41, ..., Ny, are simulated from the IHPP with inten-

sity function A, k =0, 1, ..., m, defined as

M) = 20{¢ (£ ju, 2) + D(t; i + 8, V/8)},
t € [0, 24]. (8)

Here, ¢ (t; iy, o) denotes the density of a normal random vari-
able with mean p; and standard deviation o. The different
shapes of this intensity function are visualized in Web Figure 1.

To quantify the performance of our method, we define the de-
gree of change using the Hellinger distance, (see Reiss, 1993,
Chap. 3). This is convenient in this case of horizontal shift
changes but other distances could be used, such as the L, dis-
tance. See Web Appendix B.1 for changes in the magnitude of the
intensity functions. We are interested in the magnitude of change
of two consecutive segments, so focus on the distance between
)\k and A k+1-

The Hellinger distance is defined as d(Ag, Aer1) =

#z { SO @) — 12 (t)}ldt}l/z, where A.(t) := Ac(t)/ag,
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FIGURE 2 ROC curves for single changepoint detection. The diamond-shaped dots represent the values when using the SIC penalty. The
dotted vertical line represents the 0.05 FPr. For n > 10 and for all distances (except d = 0.11 with n = 10), a 0.05 proportion of false positives

corresponds to a proportion of true positives bigger than 0.8.

with ap = [ Ar(u)du. Notice that d(-,-) takes values on
[0,1]. If d(Ak, Aky1) ~ 0, then Ap & Aryy (small change).
If d(At, Aet1) = 1, then Ag and Apq; have disjoint domains
(large change). In our simulation, we consider different val-
ues of d, varying from small to large magnitude changes (see
Web Figure 1) alongside varying m and n.

To estimate the intensity functions for each simulation, we use
the quantile-based method to place the knots and set P = S as
the number of basis functions in (1). This value is selected based
on the AIC criterion (Section 3.4). Each simulation set is repli-
cated 500 times.

4.2 Accuracy on detecting changepoints

We simulate data with a single changepoint to look at detection
accuracy. We consider sample sizes n = 4, 10, 20. These sam-
ple sizes are small to illustrate the performance of our method
and results are expected to improve as n grows. For the ROC
curves (Figure 2), false positive rates (FPr) are calculated from
no changepoint simulations and true positive rates (TPr) from
data with a single changepoint at #/2. ROC curves are obtained
by varying the penalty (threshold) value for the detection of a
change.

For no changepoints, we simulate {N; ()} with intensity func-
tion Ag(t) (8) with wo = 3. For one changepoint, the first
segment Ny.,» has intensity function A(t), and the second
segment N, 2 1)., has intensity function A;(t), where j1; =
4,4.5,5,5.5,6,6.5,7, 8. For these values of /¢, the distance
d(Xg, A1) is 0.11,0.17,0.22, 0.28, 0.32, 0.37, 0.42, 0.52, re-
spectively.

The left panel of Figure 2 shows the results when the sample
size is n = 4. Changes are accurately detected except for d =
0.11 and 0.17. This is expected since the magnitude of change is
small, coupled with a small sample size. Despite this, we can con-
clude that for n = 4, our method has good overall performance.
Increasing the sample size across periods improves results for
all change magnitudes. For example, for d = 0.11, forn = 10, a
0.05 FPr corresponds to a 0.52 TPr. Whereas for n = 20, a2 0.05
FPr corresponds to a 0.78 TPr.

In conclusion, for small change magnitudes (d = 0.11 or
0.17), our method performs well for n larger than 10. If the mag-
nitude of changes is moderate or large (d > 0.22), the perfor-

mance of our method is good even if the number of periods is as
smallasn = 4.

4.3 Accuracy of changepoint positions

Turning to estimated changepoint positions, we simulate data
with n = 24, 50, 100, 200, and m = 2, 3, 6, 12 changepoints.
For each value of m, we define the changepoint locations
T1.m as fixed proportions (floors) of the number of periods
n: (0.2,0.6), (0.6,0.7,0.8), (0.12,0.25,0.45,0.6,0.75,0.9), and
(0.09,0.18,0.23,0.36,0.4,0.5,0.57,0.65,0.72,0.78,0.83,0.9)  for
m =2,3,6, and 12, respectively. These proportions contain
a variety of short and long segments. The smallest segment
has one data point and corresponds to the case m = 12 and
n = 24, the largest segment contains 120 points and cor-
responds to the scenario m = 3 and n = 200. Given n and
Ti.my we simulate IHPPs {Ny.,..., Ny, ..}, where the
segment N;,_ .-, has intensity function A;. As before, we con-
sider intensity functions such that d(A;_1, A¢) is constant for
all k=1,...,m. We use d=0.17,0.22,0.28, 0.32, 0.42
and for each value, we define {Aq,...,A,} using com-
binations of i in (8), such that d(Ai_1,Ar) =d, for
k=1,...,m For example, for m =3 and d=0.22,
we define (o, i1, U2, 3) = (6,7.9,9.8,11.8). Then,
we estimate m and {7}, 5 for each dataset simu-
lated. The penalty S is defined as B = (P+ 1)log(n)
(SIC penalty).

We expect an increase in detection accuracy for larger d.
Table 1 shows the average number of changepoints correctly es-
timated, and Table 2 shows the average number of false positives.

For Table 1, we say that 7y is correctly estimated if a change-
point is estimated in the interval (7 — logn, 7 + logn), k =
1, ..., m. This is a window width of 6.3,7.8,9.2,10.5 for n =
24, 50, 100, 200 respectively. The log(n) choice is due to the
best theoretical rate for consistency of changepoint detection
algorithms (Tickle et al., 2020). If one interval intersects an-
otherinterval, then the length of the intervals involved is reduced
equally such that there is no longer intersection. If more than one
changepoint is estimated in the interval, one is a true positive,
and the remainder false positives. Changepoints estimated more
than log n points from the closest true changepoint are counted
as false positives. Table 2, summarizes both types of false posi-
tives (see Web Table 1 for the split values). In Table 1, we want
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TABLE 1 Average number of true positives over 500 simulations.

d=0.17 d=0.22 d=0.28 d=0.32 d=0.37 d=0.42
m=2
n =24 (8) 0.56 1.36 1.79 1.98 2.00 2.00
n=250 (16) 1.41 1.80 1.94 2.00 2.00 2.00
n =100 (33) 1.77 1.90 1.98 2.00 2.00 2.00
n =200 (66) 1.68 1.86 1.96 2.00 2.00 2.00
m=3
n =24 (6) 1.29 1.69 2.29 2.67 2.94 3.00
n=>50 (12) 1.56 2.39 2.86 2.94 2.99 3.00
n =100 (25) 1.57 2.67 2.87 2.96 3.00 3.00
n =200 (50) 1.80 2.80 2.85 2.95 3.00 3.00
m=26
n =24 (3) 2.01 2.24 2.57 3.14 4.37 S5.17
n=50 (7) 223 3.38 434 5.40 5.98 6.00
n = 100 (14) 3.14 5.03 5.84 5.96 6.00 6.00
n =200 (28) 4.79 5.47 5.80 5.94 6.00 6.00
m =12
n =24 (2) 1.16 3.10 3.94 4.16 4.77 5.45
n=50 (3) 373 426 4.82 5.51 7.16 8.38
n = 100 (7) 4.35 5.37 6.64 8.23 10.94 11.56
n =200 (15) 6.31 8.95 10.94 11.62 12.00 12.00
In parenthesis, the average segment length for each scenario is indicated. Overall, as d or n grows, the result improves.
TABLE 2 Average number of false positives over 500 simulations.

d=0.17 d=0.22 d=0.28 d=0.32 d=0.37 d=0.42
m=2
n =24 (8) 0.04 0.02 0.05 0.07 0.13 0.14
n=250 (16) 0.19 0.28 0.45 0.45 0.41 0.51
n = 100 (33) 0.85 1.34 1.72 1.57 1.48 1.66
n =200 (66) 2.86 3.78 4.24 3.88 3.55 3.66
m=3
n =24 (6) 0.06 0.04 0.03 0.04 0.07 0.2§
n=50 (12) 0.50 0.24 0.33 035 0.40 0.67
n =100 (25) 1.75 1.30 1.55 1.84 1.55 1.86
n =200 (50) 4.62 3.81 4.27 5.09 4.07 4.12
m=26
n =24 (3) 0.00 0.01 0.00 0.00 0.00 0.01
n=>50 (7) 0.05 0.06 0.04 0.03 0.04 0.10
n = 100 (14) 0.34 0.32 0.27 0.28 0.33 0.69
n =200 (28) 1.28 1.47 2.12 2.28 1.92 2.86
m= 12
n =24 (2) 0.00 0.00 0.00 0.00 0.00 0.00
n=>50 (3) 0.00 0.00 0.00 0.00 0.00 0.01
n = 100 (7) 0.02 0.02 0.01 0.01 0.01 0.19
n =200 (15) 0.78 0.32 0.19 0.56 0.30 1.12

In parenthesis, the average segment length for each scenario is indicated. Overall, the method does not produce too many false positives.

m to be close to m and observe that, as d and n grow, the result
improves for all values of m. Recall the use of small sample sizes
here to demonstrate the limits of our approach.

Let us analyze the result for each scenario in more detail. For
m = 2, we observe that the true changepoints are correctly es-
timated in almost all cases of different sample sizes and mag-
nitude of changes, except for n = 24 with d = 0.17. The rea-
son may be the sample size of the first segment, which is four,
since if the segment sample size increases to ten (n = 50), the
result gets better. We obtain the same conclusions for m = 3
and m = 6. If some of the segment sample sizes on the data are
smaller or equal to ten (eg, m = 3 and n = 100), half of the

true changepoints can be missed when the magnitude of change
is small, d = 0.17. The result improves if the segment sample
sizes increase or if the magnitude of change increases. For exam-
ple,n = 200 and d = 0.22, the average number of correctly es-
timating the true changepoints when m = 3 is 2.80, and when
m = 6 is 5.47. Now, let us analyze the scenario with m = 12
changepoints. In this case, the method has a poor performance
when n = 24 and 50; this is mainly because the segment sample
sizes vary from 2 to 7. At n = 100, we have a good performance
with a magnitude of change d > 0.38. Results improve when
n = 200, eg, on average 8.95 true changepoints are correctly
estimated with magnitude of change d = 0.22 and 10.94 with
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d = 0.28.In the latter scenario, the smallest segment sample size
is 10.

To summarize Table 1, our method has good performance in
all cases where the segment contains “enough” observations for
the size of change in each scenario. Based on our single change-
point simulation studies, that is, at least 10 observations for each
segment for small values of d (a complex scenario) and around §
observations for medium values of d.

Now, let us analyze the results for Table 2. We describe the re-
sults according to the sample sizes. We have that, for n = 24 and
50, the average false positives are less than 0.67 for all distances
and all values of m. Specifically, occasionally only one false posi-
tive is observed.

For n = 100, we observe that, for m = 2 and 3, on average,
between 0.85 and 1.86 false positives are observed. Specifically,
most of the time, we observed one false positive and sometimes
two false positives for all distances. For m = 6 and 12, the av-
erage number of false positives is less than one. Finally, for n =
200, for m = 2, 3, and 6, the average number of false positives
varies from 1.28 to 5.09, being m = 3 the scenario where more
false positives are observed (on average 4 or §). While for m =
12, frequently only one and very occasionally two false positives
are observed.

Overall, for sample sizes n = 24, 50, and 100, we observe 1 or
2 false positives on average for all values of m and all distances.
Whereas for n = 200, we obtain around 3 to 5 false positives on
average with m = 2 and m = 3, two on average with m = 6,and
around 1 withm = 12.Based on these results and given the com-
plexity of the cases, we think that our method performs well.

In addition, Web Figures 2 and 3 present boxplots of the values
of m histograms of the T values, respectively. Overall, compared
with the results from scalar data, the method is sensitive to small
changes and does not produce too many FPs.

S DATA APPLICATION

In this section, we analyse sensor data measuring daily activ-
ity using the approach described in Section 3. In the following,
we only present the results for one person. Web Appendix C
presents two more analyses of two different people.

5.1 Datadescription

Data are obtained from Howz (Howz, 2024), and they repre-
sent sensor activations by a single older person living in a house.
The sensors are triggered when any movement is detected, eg,
in the bedroom, hallway, kitchen, bathroom, and living room.
In addition, the sensors capture specific activities that are per-
formed around the house, eg, using a kettle, a toaster, and a mi-
crowave, opening the fridge door, the back door, the front door,
and the main door. These sensors record the time they are acti-
vated for 61 days. Figure 1 (top left) shows 6 days of the raw data.
‘We assume that there is no weekend effect. This is reasonable as
these are retired adults who have a similar routine every day of
the week (see also Web Appendix C.2 for a justification of this
assumption).

Detecting changes is important since it allows us to detect po-
tential health problems. In normal conditions, a person is ex-
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pected to perform their regular routines. For example, waking up,
having breakfast, lunch, and dinner around the same time every
day. If one day the waking up is pushed back by 30 or 60 min, or if
the person skips some regular routines, then this is a change. De-
pending on the change, it could be interpreted as an indicator of
possible health problems, and our goal is to detect these changes.
This is challenging because of the inherent periodicity compo-
nent of the data (24 h periodicity). Taylor et al. (2021) assumes
that data are Bernoulli time series and detects changes around
the circular axis. Changes detected are within period, eg, wake-
up times. These changes cannot be used as an indicator of pos-
sible health problems. Instead, we consider identifying changes
across days. To achieve this goal, we assume that the number of
activities for each day is a realization of an IHPP (top right plot
of Figure 1). Note that the number of activities per day is vari-
able; 29 is the minimum, 120 is the maximum, and 70.43 is the
average. Since regular daily routines will have similar sensor acti-
vations, it is natural to assume that they will have the same inten-
sity function. Whereas if there is a change in the regular routines,
the corresponding intensity function should be different.

5.2 Model specifications

We assume the model specification as given in Section 2 with
i=1,...,61days,and t € [0, 24]. For model diagnostic, see
Web Appendix C.1.

‘We segment this sequence according to its intensity functions.
We represent the intensity functions as in (1), with Yy (t)} be-
ing cubic B-spline basis functions. We note that other basis func-
tions could be used here. Based on the AIC criterion, we set
P = 5.Finally, we define $, the penalty incurred when introduc-
ing a changepoint, as 8 = 6log(61) (SIC penalty). This penalty
considers the number of parameters to be estimated when intro-
ducing a new intensity function and the sample size. Whilst this
standard penalty works well for this application, it may not work
in all applications. There are several approaches to penalty selec-
tion within the changepoint literature with two common data-
driven approaches. The first is the “elbow” approach common
in, eg, choice of significant principal components, one plots the
number of changepoints selected against the penalty parameter
and looks for the “elbow” in the curve (Lavielle, 2005). This ap-
proach works better for signals with a larger number of change-
points to populate the curve. A second approach inspired by
supervised clustering uses labeled data (Hocking et al., 2020).
Here, segments of data are labeled as “contains a changepoint”
or “no changepoint,” and a penalty is chosen which balances en-
suring that the former segments contain a changepoint and the
latter do not. Naturally, this requires a sizeable set of labeled data
to provide a sensible choice.

5.3 Results

Applying our method, we obtain 7 = 2 changepoints at S, and
3S. That is, the segmentation is N5, Ne.35, and Nse.¢. Figure 1
shows the segmentation, and Figure 3 (first row) shows the three
different intensity functions of the Poisson processes for each
segment.

The first difference we observe in the segments is the differ-
ent number of activities throughout the day. In the first segment,
the person is much more active than in the second segment. The
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FIGURE 3 First row: Intensity function of each segment. The maximum of Ao, A1, and A, are attained around 11 am, 8 am, and 9 am,
respectively. Second row: Histograms of event times for the three segments. The number of activities are grouped per hour.

number of activities then increases again in the third segment.
These overall changes are clearly observed in the plots shown in
Figure 3. Let us take a closer look at the difference between two
consecutive segments. For this, we present histograms in Fig-
ure 3 (second row), which show the proportion of daily events
within a segment and grouped per hour. We observed that activ-
ities are concentrated from 7 am to 1 pm for segment one, with
peaks at 8 and 12. Thus, the maximum of/)zo is at around 11 am.
Whereas for segment two, activities are concentrated from 7 am
to 9 am and 12 pm. This gives the maximum of A1 around 8.
The other significant difference between segment one and seg-
ment two is there are proportionately more activities around 10
o’clock in segment 1. We can conclude that, after S days, this
person decreased their activity and also changed their behavior,
specifically at hours 10 am and 1 pm. Now; let us compare seg-
ments two and three. In segment three, activities increase again.
In these two segments, the person has the same morning rou-
tine and changes after midday. In segment 2, afternoon, the per-
son’s activity decreases drastically and then remains relatively
constant, with a slight peak at 5 and 10 pm. In terms of the inten-
sity function, this represents a steady slope after the maximum
value is reached, as we can appreciate in Figure 3 (first row, mid-
dle plot). On the other hand, in segment 3, we observe more of
an increase in activity after 2 pm. This remains relatively con-
stant until 6 pm. This is a more uniform decline after the peak
in the intensity function. For segments two and 3, we conclude
that the main difference is the activities in the afternoon. In seg-

ment 3, more activities are performed from 2 pm to 6 pm than in
segment 2.

Finally, we verified with Howz if these two detected changes
are related to their findings. Upon visual inspection by Howz,
2 out of 4 other metrics that Howz uses would signal the
first changepoint, with a further metric changing at the second
changepoint. More specifically, the second changepoint appears
to be driven by a change in the time of their start-of-day whilst
the first is by a change in their end-of-day routines.

From a medical viewpoint, changes in daily activities may be
related to eg, memory loss or fatigue, since these may cause a
person to skip some daily routine activities. When a change is
detected in the dataset, the company contacts the person to ask
some questions. If necessary, the person is advised to seek med-
ical advice. In general, changepoint detection methods and con-
tinuous monitoring of daily activities can help a person’s well-
being and enhance care and support. It also supports the older
person’s ability to maintain an independent living.

6 CONCLUSION AND DISCUSSION

An important issue today is the development of new tech-
nologies and methodologies to support independent living and
healthy ageing of older people. In-home sensors are unobtrusive
and future-oriented in collecting data that can be used to study
behavioral changes. Tracking behavior changes provides a valu-
able monitoring tool. Along this line, we have proposed a new
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approach to model and detect changes in sensor data measuring
daily activity.

Our approach assumes that changes within a day are part of a
person’s daily routine and focuses on changes across daily behav-
ior. We assume that the set of event times within a given day is a
single observation. This observation is represented by a contin-
uous temporal process. Then, our changepoint model is defined
on the sequence of temporal processes. Here, we used B-spline
basis functions to represent the daily processes. However, note
that other basis functions (eg, Fourier, wavelets) could be used
as appropriate for a given application, especially if continuity at
the start/end of each day is desirable.

Our approach can be extended in different directions. For ex-
ample, one can cluster the sequence of processes according to
different alarm levels (habitual behaviors, nonhabitual behavior,
etc.). Also, it allows us to focus on specific periods or intervals of
time—for example, daily, weekly or nighttime routines. If data
is collected at different houses, we could also cluster households
using the individual intensity functions. Moreover, our approach
can combine data from different sources and at different reso-
lutions. Another extension would be to use Cox processes or
Hawkes processes instead of IHPPs; one needs “only” to change
the cost function, but this could involve computational chal-
lenges. Alternatively, we could consider multivariate processes
(including spatial structure). For example, each sensor can be
modeled by a point process, and then changes can be detected in
the multivariate point process. Again, one could extend the pro-
posed method by modifying the cost function. All these possible
extensions are left for future work.

Alimitation of the method is that it requires observing a whole
period. For example, if a period represents 24 h, data collected
until mid-day cannot be used since we will not be able to estimate
the intensity function. Another limitation is that the proposed
method requires a “large” sample size to detect small changes.
For example, from Figure 2 with d = 0.11, a sample size big-
ger than 20 is needed to accurately detect a changepoint with
lower false positive rates. Although this is a very small change
(see Web Figure 1), and in this case, any method will require a
large sample size to obtain accurate results. A more realistic small
change would be d = 0.17 (d = 0.22); in this case, the method
requires a sample size bigger than 10 (6) to accurately detect a
changepoint with a lower false positive rate (around 0.05). Thus,
we recommend the user set the minimum size of a segment ac-
cording to the context (this is an argument in the R function that
estimates m and T).

We conclude that our methodology presents a valuable alter-
native to detect change points when data are a sequence of point
processes. The corresponding R code to estimate the change-
points will be available as part of the changepoint R package (Kil-
lick et al.,, 2022). Alternatively, R code can be found on the au-
thor’s GitHub.
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