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A B S T R A C T  

The pro b le m of health a nd ca r e of people is being r ev olutionize d. An importa n t compone n t of tha t r evolution i s di s eas e preve n tion a nd health 

improve me n t from home. A natural approach to the health pro b lem is monitorin g chan ges in people’s behavior or act ivit ie s. The se change s can 

be ind icator s of pote n ti al health pro b lem s . How ev er, due to a person’s daily pa t te rn, cha nges will be o bs erv e d throughout each day, with, eg, an 

increase of eve n ts a round meal times and fewer eve n ts during the ni gh t. We do not wish to detect such within-day changes but rather changes in 

the daily behavior pa t tern fr om one d ay to the next. To this end, we as sume the s e t of eve n t times within a give n d ay as a single o bs erv ation . We 
model this o bs erv ation as the realization of an inhomogeneous Pois s on proces s where the rate function ca n va ry with the time of day. Then, we 
propos e to de te ct ch anges in the se quenc e of inhomogene ous Pois s on proces s es. Thi s approach i s appr opria te for many p henomena, particul arly 
for home activity data. Our methodology is evaluated on simulated data. Overall, our approach uses local change information t o det ect changes 
acros s d ays. A t the s ame time, it allows us to visualize and interpret the res ults, ch a nges, a nd tre nds ove r t ime, allowing the detect ion of pote n tial 
health decline. 

KEY W OR DS : B-spline basis; cha ngepoin ts detection; PELT; segme n tation; seque nce of inhomogeneous Pois s on proces s es. 

T  

t  

c  

s  

b  

o  

c  

c  

s  

r  

t  

r  

2
 

d  ∑
 

s  

l  

p  

s  

f  

t  

I  

i  

w  

e  

w  

o  

(
 

H  

t  

r  

k  

d  

t  

f  

N  

t  

i  

e  

b  

a  

s  

T  

 

t  

i  

a  

t  

c  

R
©
C
t

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/4/ujae114/7829052 by Serials D
ept user on 04 N

ovem
ber 2024
1 I N T R O D U C T I O N 

his pa pe r is pa rt of a vision to revolutionize health a nd ca re in
he community for 2050 (QUEST, 2024 ). When imagining the
ommunity s e ttings a nd homes of 2050, we e nvisage m ultiple
 en s or s and med ia fea tur e s in our s ma rt e nvironme n t. Data wi l l
e c olle cte d on a l arge s cale, a t differ ent fr e quencies (e g, se c onds
r min utes), a nd from diffe re n t s ources; s ome of thes e are being
 olle cte d now. Stat ist ical methods ar e r equir ed to analyze these
omp lex and l arge d atas e ts. The re a re seve ral diffe re n t types of
 en s ors and goals for stat ist ical analysis of these sensors. Some
e c e n t work includes Wifi d istur bance s ( Us man et al., 2022 ), fa -
i gue using RF se nsing (Coope r et al., 2024 ), vital sign using
ad ar (Els ayed e t al., 2024 ), a nd cha ng es in g ait (Aust in et al .,
011 )—all using passive sensing. 
One type of data in the sensing context is a collection of ran-

om eve n t times, known as te mporal poin t process: N(t ) =
 

j≥1 1 { t j ≤t} , where { t j } are the event times, and N(t ) r epr e-
e n ts the total n umbe r of eve n ts up to time t (se e, e g, B a dde-
ey, 2007 ). The most commonly used point process is the tem-
oral Pois s on proces s, which is cha racte rized b y the mean mea-
ure λ( t ) = 

d 
d t E { N( t ) } , where λ( t ) is known as the in te nsity

unction . Loos e ly speaking, λ(t ) re pre se n ts the probability that
here wi l l be a n eve n t within a “small” time in te rval [ t , t + d t ] .
f this function is not cons ta n t ove r t , the n the Pois s on proces s
s known as an inhomogeneous Pois s on proces s (I H PP). Here,

e propose a novel s tatis tical me thodo lo gy to de te ct ch anges in
e c eiv e d: Septe mbe r 7, 2023; Revise d: July 24, 2024; Ac c epte d: Septe mbe r 24, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ), wh

he original work is properly cited. 
ve n t times using a new pa radi gm of data an alysis . Spe c i fically,
e propose a cha ngepoin t me thodo lo gy for a s e quenc e { N i (t ) }
f I H PPs, where each N i is define d on a spe c i fic period of time
eg, 24 h). 

Our proposal is motivated by home activity da ta pr ovided by
owz ( 2024 ). The company collects data on household activi-

ies of older people. The dataset consists of a c olle ction of times,
 epr ese n tin g a ctivities pe rformed b y a hous eho ld, eg, using the
 itchen, walk ing through the hallway, and opening the back
oor, see top left plot of Figure 1 . The rate of eve n ts wi l l vary

hroughout each day due to a hous eho ld’s d aily pa t tern, with, eg,
ew er ev ents during the night, and increases around meal times.

otic e th at thes e within-d ay cha nges a re pa rt of the regula r rou-
ines. We do not wish to dete ct s uch ch a nges, but rathe r cha nges
n the daily behavior pa t tern fr om one day to the next. For
xample, from the top left plot of Figure 1 , w e observ e the same
eh avior (no “ch ange”) betw e e n days 1 a nd 2. In con tras t, the re
 ppea rs to be a change between days 2 and 6. On day 6, act ivit ies
 ta rt hours later than on day 2. Similarly, day 6 and day 36 vary.
hes e acros s-d ay cha nges a r e mor e informa tive than the within-

day changes in monitoring people’s health. To that end, we tr ea t
he s e t of eve n t times on a give n d ay as a single o bs erv ation . That
s, for each day i , the process N i (t ) , t ∈ [0 , 24] is ass ume d to be
 single o bs erv a tion and r epr ese n ts the data for day i . We model
his o bs erv a tion as a r ealiza t ion of an I H PP whose rate function
a n va ry with the time of day. Figure 1 , top right plot, shows all
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
ich permits unre stricted re use, dis tribution, a nd reproduction in any me dium, provide d 
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FIGUR E 1 E xample of our proposal with Howz data. The top left plot shows six periods of eve n t times. The top ri gh t plot shows the comp le te 
se quenc e of I H PPs . Fin ally, w e se ek to part it ion i into con s ecutive region s and obtain a segme n tation of { N i } , as shown in the se c ond row of the 
plot. Each segme n t should correspond to a spec i fic in te n sity function . 
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r ealiza tions of N i with the Howz data. We then wish to detect
changes in this sequence { N i } of proces s es . Spe c i fically, i f N i and
N i +1 ar e r ealiza tion s of the s ame proces s, the n the re is no cha nge.
In con tras t, the re wi l l be a cha nge if they a r e r ealiza tions fr om
two diffe re n t proces s es . This induc es a segme n tation of { N i } ,
as shown in the bottom plot of Figure 1 , where each segment
r epr ese n ts r ealiza tions of the same I H PP. Overall , our proposed
me thodo lo gy us es a c onc ept similar to function al data an alysis . 

To the best of our kno wledg e, thi s i s the first paper to propose
dete cting ch anges in the se quenc e { N i } of temporal proces s es.
Pr evious r esear ch studie d ch anges on the I H PP defined on the
total time in te rval whe re the eve n ts a re o bs erv e d, ie, t ∈ [0 , T ] ,
wher e T r epr ese n ts the total o bs erv at ion t ime (eg, 1 month or
1 year). In the latter fr amework, S hen and Zhang ( 2012 ), Cher-
no ya rov et al. ( 2018 ), Ng and Murphy ( 2019 ) all propose meth-
ods with sli gh t va riations in assumptions or fitting methods.
Most of the r esear ch papers put changepoints within the inten-
sity function λ(t ) . For example, for a sin gle chan ge point, it is
ass ume d th at λ(t ) h as the form λ(t ) = λ(1) (t ) 1 { 0 ≤ t ≤ τ1 }
+ λ(2) (t ) 1 { τ1 < t ≤ T } . That is, time is linear or a univ ari ate
v e ctor. How ev er, in m any phenomen a, linear ch anges m ay not
indicate a change in the process itself (noted above). 

In s umm a ry, this pa pe r propose s a ne w me thodo lo gy for de-
te cting ch a ngepoin ts in a se quenc e of I H PPs . We c onsider each
period (day) to be an o bs erv a tion fr om an I H PP. The corre-
sponding in te n sity function s a re modeled nonpa ra metrically us-
ing finite basis functions. Taking adva n tage of this low- rank re p-
rese n tation, we use a penalized cost approach to detect change-
points. 
The re mainde r of our pa pe r is orga nize d as follows: In Se c- 
tion 2 , we prese n t our methodology and the changepoint model. 
T hen, in S e ction 3 , w e describe how t o estimat e the locations and 

the n umbe r of cha ngepoin ts. Als o, we des cribe how to model 
a nd es timate the in te n sity function s . In Se ction 4 , w e c onduct
a simulation study to evaluate the pe rforma nce of the proposed 

me thodo lo gy. We ev aluate the a ccura cy of detectin g chan ge- 
poin ts a nd the a ccura cy of chan gepoint locations under differ- 
e n t sim ul ation s e ttings . In Se ction 5 , w e an alyze s en s or d ata of
the daily act ivit ie s of a house hold . In Sect ion 6 , we prese n t some
d isc ussion. 

2 M ET H O D  O L O G Y  

In this se ction, w e detail our proposed method to detect change- 
points for event o bs erv ation s. 

2.1 Pr elimin aries 
Ass ume th at w e o bs erv e ev ents at times 0 < t 1 , . . . , t l with t 1 <
. . . < t l < δ in the in te rval [0 , δ] , whe re δ r epr ese n ts the dura-
tion of a spec i fic period, eg, 24 h . We as s ume th a t the cumula tive
c ount ev ents ov er time is a r ealiza tion of an IHPP with in te nsity
function λ : [0 , δ] → R 

+ . That is, N(t ) := max { j : t j ≤ t} is 
a r ealiza t ion of an I H PP on [0 , δ] . With this assumption, for each
t ∈ [0 , δ] , N(t ) is a ra ndom va riable r epr ese n ting the random
n umbe r of poin ts o bs erv e d in the in te rval [0 , t] , a nd N(t ) is
Pois s on distributed with mean 

∫ t 
0 λ(u )d u . 

Now, ass ume th at w e o bs erv e time ev e n ts for seve ral pe riods.
Let n be the total n umbe r of periods (eg, the total n umbe r of 
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ays) for which we have data. Then, our data are the se quenc e
f I H PPs { N i (t ) : t ∈ [0 , δ] , i = 1 , . . . , n } , with correspond-

ng in te n sity function s { λi (t ) : t ∈ [0 , δ] , i = 1 , . . . , n } . No-
ic e th at the c ounting proc e ss N i only re pre se n ts eve n ts for pe-
iod i . Figure 1 , top ri gh t, i l lustra tes r ealiza tions of { N i } . 

2.2 Mode l definitio n 

e now seek to part it ion i = 1 , . . . , n into con s ecutive region s.
ach segme n t wi l l be r epr ese n ted b y one in te n sity function . This

s, { N i } wi l l be groupe d by ass uming th a t they ar e r ealiza tions
rom the same underlying I H PP. 

For i ≤ j, we de note b y N i : j the s e t of o bs erv e d pro-
es s es from index i to j, ie, N i : j = { N i , . . . , N j } , where N i : i =
 N i } . Our model contains m cha ngepoin ts at positions τ1: m 

=
(τ1 , . . . , τm 

) with τ1 < τ2 < . . . < τm 

. The cha ngepoin t v e c-
or τ1: m 

is a subs e t of (1 , 2 , . . . , n − 1) . The se m change points
p lit the d ata into m + 1 segme n ts. Let τ0 := 0 a nd τm +1 :=
 , the kth segme n t con tain s the traj ectory of the proces s es
 (τk−1 +1): τk , k = 1 , . . . , m + 1 . The s tatis tical pro b le m is es ti -
ating the n umbe r of cha ngepoin ts m and their locations. 
For da ta tha t ar e s cal ars, s everal me thod s exi st t o estimat e
 ultiple cha ngepoin ts. One a pproach is to combine a single

ha ngepoin t ide n t ificat ion me thod with a binary s ear ch (Scot t
nd Knott, 1974 ). This iterative ly applie s the method to dif-
e re n t subs e ts of the d ata. This h as a cheap c omputation al c ost
 (n log n ) but does not gua ra n t ee t o find the optimal s o lution

Eckley et al., 2011 ). An altern ativ e approach is to minimize a
ost function for m cha ngepoin ts. An exhaus tive sea rch gua r-
 n tees the optimal s o lution but invo lves con sidering 2 

n −1 so-
utions, which is c omputation ally ch allen gin g. Re c ent dyn amic
rogra mming al gorithms h av e be en propose d to ov erc ome this
h allenge, se e, e g, Ki l lick et al. ( 2012 ), a nd Maids tone et al.
 2017 ). He re, we exte nd the exact sea rch a ppr oach fr om (Ki l lick
t al., 2012 ), to the se quenc e of I H PPs { N i } . 

3 E ST I M AT I O N  M ET H O D  

o estimate the number and locations of ch angepoints, w e h av e
o spec i fy the pa ra mete r space for the in te n sity function s, λi , i =
 , . . . , n . We describe the est imat ion method for these before
 isc ussing how to estimate the n umbe r, m a nd locations, τ, of
ha ngepoin ts. 

3.1 Mode l fo r the inte n s ity fu n ct ion 

o ensure that λi t ake s value s in R 

+ , we assume that λi (t ) =
xp { W i (t ) } , where W i are elements of a space H of functions de-
ned on the compact in te rval [0 , δ] . The functions λi describe
ow eve n ts occur in the time in te rv al [0 , δ] , s o w e w ould like

o model them with minimal restrictions to capture any possi-
le structure. We use a nonpa ra metric a pproach. Notic e th at λi 
or W i ) are defined in a n in trinsically infinite-dime nsion al spac e,
 aking the estim a tion pr oc e dure ch allen gin g. To o v erc ome this

h allenge, w e r epr ese n t each unknown function W i as a linear
 ombin ation of known basis functions . Here, w e use cubic B-

spline basis function because of its ability to r epr ese n t local prop-
 rties a nd their n ume ral prope rtie s, althou gh other basis func -
ions c ould e qually be use d. The n umbe r of knots dete rmines
he n umbe r of the B-sp line basis function s. Le t 0 = 

˜ t 1 = · · · =
˜ 
 4 < 

˜ t 5 < . . . < 

˜ t P < 

˜ t P+1 = · · · = 

˜ t P+4 = δ be the knots in
0 , δ] . The n umbe r of basis functions wi l l be P . The knot p l ace-
e n t wi l l depend on the pro b le m being s tudied, the mos t com-
on approaches used are the quantile-based and the equally-

spac e d knots (Ruppert et al., 2003 ). For our application, we use
he qua n tile-bas ed me thod, and thi s i s fixed for all i = 1 , . . . , n .
et ψ (t ) = (ψ 1 (t ) , . . . , ψ P (t )) be the as s oci ated B-sp line ba-

is. Thus, we r epr ese n t each function W i as 

W i (t ) = 

P ∑ 

p=1 

w p,i ψ p (t ) = w 

� 

i ψ (t ) , (1)

here w i is the v e ctor w eights . This lo w - rank re pre se n tation is
idely used in ma ny con texts, such as functional data analysis,
 nd it ca n r epr ese n t c omplicate d sh apes of the in te nsity func-
ion. The v e ctor w ei gh ts w i a re obtaine d using the m aximum
 ikel ihood est imat ion method by opt imiz ing ( 3 ) below. With the

odel ( 1 ) for a single period i , w e c onsider how to discriminate
etw e e n diffe re n t N i across i = 1 , . . . , n . 

3.2 Pena lized c os t appro ach 

he pen alize d c os t a pproach h as tw o c ompone n ts: a cos t func-
ion C(N i : j ) as s oci ated with a s egme n t of data N i : j , i ≤ j, and
 penalty term β to prevent o verfittin g. In pra ctic e, the c om-
on cost functions used are the squa re-e rror-los s function (s ee,

g, Lavielle and Moul ines, 2000 ), c umulativ e s ums (se e, e g, In-
lán a nd Tiao, 1994 ), a nd min us twic e the log -l ikel ihood (see,
g, Horvath, 1993 ). For β , the most c ommon choic es include
ch warz informa tion cr iter ion (SIC; Schwarz, 1978 ) and mod-
 fied Bayesian infor mation cr iter ion (MBIC; Zhang and Sie g -
 und, 2007 ). The n, the pe n alize d c ost function for a se gmen-

ation is defined as 

Q (N 1: n ; τ1: m 

) = 

m +1 ∑ 

k=1 

{C(N (τk−1 +1): τk ) + β} . (2)

here β > 0 is the penalty by introducing a changepoint into
he model. 

Since { N i } is a se quenc e of I H PPs, we use the ne gativ e log -
 ikel ihood as the cost function. In this case C(N (τk−1 +1): τk ) =

max λ log L (N (τk−1 +1): τk | λ) , where L is the l ikel ihood of the
e quenc e N (τk−1 +1): τk . For a segme n t, ass ume the proc e sse s
 i within are independent and ident ically distributed . Then,
(N (τk−1 +1): τk ) = min λ

∑ τk 
i = τk−1 +1 γ (N i ; λ) , where γ is minus

he log-l ikel ihood of an I H PP defined in [0 , δ] . 
Let λk be the in te nsity function of the underlying I H PP for the

th segme n t. Le t us as s ume th at W i h as the form ( 1 ). Then, 

γ (N i ; λk ) = 

∫ δ

0 
exp 

⎧ ⎨ ⎩ 

P ∑ 

p=1 

w p,k ψ p (t ) 

⎫ ⎬ ⎭ 

d t 

−
n i ∑ 

j=1 

P ∑ 

p=1 

w p,k ψ p (t i j ) , (3)

here n i is the number of events o bs erv e d in [0 , δ] for process
 i , and { t i 1 , . . . , t i n i } are the corresponding in tra pe riod times
he re eve n ts a re o bs erv e d. Thus, the c ost for se gment k is ob-

ained by minimizing the s umm ation of ( 3 ) on the index i =
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τk−1 + 1 , . . . , τk . Explicitly, 

C(N (τk−1 +1): τk ) = ( τk − τk−1 ) 
∫ δ

0 
exp 

⎧ ⎨ ⎩ 

P ∑ 

p=1 ̂

 w p,k ψ p ( t ) 

⎫ ⎬ ⎭ 

d t 

−
τk ∑ 

i = τk−1 +1 

n i ∑ 

j=1 

P ∑ 

p=1 ̂

 w p,k ψ p (t i j ) , (4)

where ̂ w p,k is such that log ̂  λk (t ) = ̂  w 

� 

k ψ (t ) is the in te nsity
function that minimizes the sum of the loss functions for the
kth segme n t. Simila rly, ̂  λk (t ) is the “best” intensity function that
r epr ese n ts the data from segme n t k. So each segme n t has a n es-
tim ate d in te nsity ̂  λk (t ) . 

To estimate the number and location of ch angepoints, w e min-
imize ( 2 ): 

min 

1 ≤τ1 < ... <τm ≤n −1 
Q (N 1: n ; τ1: m 

) (5)

Note this minimization is over all pos sib le cha ngepoin ts a nd ca n
be c omputation ally ch allen gin g. We a dopt the PELT method to
ov erc ome this challenge, as described in the following. 

3.3 Minimizing the penalized cost 
To minimize the cost function ( 5 ), we adopt the PELT method
(Ki l lick et al., 2012 ); a modification of the optimal partitioning
(OP) proc e dure ( Jackson et al., 2005 ). 

The basis of OP method is a rec ur sion for the minimum cost of
segme n ting the seque nce of data N 1: q , with q < n . Let S q = { τ :
0 = τ0 < τ1 < . . . < τm 

< τm +1 = q } be the s e t of all possi-
ble cha ngepoin t v e ctors for d ata N 1: q . Le t F (q ) be the as s oci-
ate d c ost of the s o lution of Q ( N 1: q , τ) , and define F ( 0) = −β .
Then, we have that 

F (q ) = min 

τ∈S q 

[ 

m ∑ 

k=1 

{
C(N (τk−1 +1): τk ) + β

}] 

= min 

p : p<q 

{
F (p) + C(N p+1: q ) + β

}
. (6)

Thus, to obtain the minimal cost for the data N 1: q , one minimizes
over all pos sib le v alues for the most re c e n t cha ngepoin t prior to
q . Although this rec ur sion re duc es the c omputation al c ost from
O (2 

n ) to O (n 

2 ) , it is sti l l chal len gin g for large d atas e ts. To gain
c omputation al adva n tages, we adopt the PELT me thod whos e
key idea is to discard values of p that cannot never be a minimum
in ( 6 ). The condition of discarding a candidate cha ngepoin t is as
follows. 

Let p < q < r be three time points . Ass ume th at
C(N (p+1): q ) + C(N (q +1): r ) ≤ C(N (p+1): r ) . If 

F (p) + C(N (p+1): q ) ≥ F (q ) , (7)

the candidate p can never be the optimal last changepoint prior
to r. Thus, if ( 7 ) holds, p i s di scarded in ( 6 ) for all indices la rge r
tha n q . This ca n re duc e the c omputation al c os t si gnifica n tly; if
cha ngepoin ts occur regularly the computational cost is O (n ) . 

Fin ally, the re c ur sion ( 6 ) is s o lv e d usin g the prunin g step for
q = 1 , . . . , n , a nd th us we obtain F (n ) , the minim um value
of ( 2 ). The s e t of cha ngepoin ts at F (n ) is the estimator of
the cha ngepoin t position s within the d at a. De spite the prun-
ing, PELT re mains a n exact opt imizat ion method . Th us a n ex- 
h austiv e search and PELT would return the same solution but 
PELT w ould c omp le te the opt imizat ion orders of magnitude 
fas te r [ O (n ) verses O (2 

n ) ]. 

3.4 Selecting P 

Notic e th at P , n umbe r of basi s functions, i s fixed acros s all s e g -
me n ts, a nd it is ass ume d to be known in all the above equations. 
In practice, the value of P needs to be defined. This is a chal- 
le nge, a nd it depe nds on the d ata. For s ome basis function s, it 
is pos sib le to s e t P = 1 and con sider a con s ta n t basis function,
implying that the Poisson process is homogene ous . One way to 

select P is using AIC. For a given P , estimate individual inten- 
sity functions λi , i = 1 , . . . , n , via maximum l ikel ihood and ( 1 ). 
Obtain the average AIC values over n , ̂ AIC (P ) . Now, r epea t this 
proces s, v a rying P , a nd s e t ̂  P = min P ̂ AIC (P ) . On average, this
should accura tely r epr ese n t the in te nsity functions. The n, es ti - 
m ate ch a ngepoin ts using ̂  P . 

4 S I M U L AT I O N  ST U DY  

We inves ti gate the pe rforma nce of our proposed method, 
NHPP-PELT, unde r diffe re n t sce na rios. Firs t, we as s es s the ac-
cura cy of detectin g the presence of cha ngepoin ts; summa rizing 
the results using the ROC curv es . Se c ond, w e de mons trate the 
a ccura cy of est imat ing the cha ngepoin t positions. For each sce- 
n ario, w e use cubic splines to r epr ese n t the in te nsity function 

and we compute the average number of c orre ctly estim ate d and 

fals ely de t ect ed { τk } . H ist o gram s of ̂  τk values and boxplots of ̂m
values ar e pr ovided . Addit ional simulat ion results for data ge ne r- 
ated with an ETAS model can be found in the Web Appendix B.2 . 

4.1 S imulat ion sett ing 

We simulate data as a se quenc e of I H PPs with m 

cha ngepoin ts: N 1 ( t ) , . . . , N τ1 ( t ) , N τ1 +1 ( t ) , . . . , N τ2 ( t ) ,
. . . , N τm +1 (t ) , . . . , N n (t ) , t ∈ [0 , 24] . The m cha ngepoin ts 
r epr ese n t cha nges in the in te n sity function s acros s d ays. Thus,
we define m + 1 in te n sity function s { λ0 (t ) , λ1 (t ) , . . . , λm 

(t ) } ,
and N τk +1 , . . . , N τk+1 are simulated from the I H PP with in te n- 
sity function λk , k = 0 , 1 , . . . , m , defined as 

λk (t ) = 20 { φ(t; μk , 2) + φ(t; μk + 8 , 
√ 

8 ) } , 
t ∈ [0 , 24] . (8) 

Here, φ(t; μk , σ ) denotes the density of a normal random vari- 
able with mean μk and standard deviation σ . The diffe re n t 
shapes of this intensity function are vis ualize d in Web Figure 1 . 

To qua n tify the pe rforma nce of our method, we define the de- 
gree of chan ge usin g the Hellinger distanc e, (se e Reiss, 1993 , 
Chap. 3). Thi s i s c onv e nie n t in this case of horizon tal shift
changes but other dist ance s could be used, such as the L 2 dis- 
tanc e. Se e Web Appendix B.1 for changes in the magnitude of the 
in te n sity function s. We a re in te res ted in the magnitude of change 
of tw o c on s e cutiv e se gme n ts, so focus on the dis ta nc e betw e en
λk and λk+1 . 

The Hell inger d i stance i s defined as d(λk , λk+1 ) = 

1 √ 

2 

{ ∫ { ̃  λ1 / 2 
k (t ) − ˜ λ1 / 2 

k+1 (t ) } 2 d t 
} 1 / 2 

, where ˜ λk (t ) := λk (t ) /a k , 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data


Biometrics , 2024, Vol. 80, No. 4 � 5 

FIGURE 2 ROC curves for single cha ngepoin t de tection . The dia mond -sha ped dots r epr ese n t the values when using the SIC penalty. The 
dotte d v ertical line r epr ese n ts the 0.05 FPr. For n ≥ 10 and for all dist ance s (exce pt d = 0 . 11 with n = 10 ), a 0.05 proportion of false positives 
corresponds to a proportion of true positives bi gge r tha n 0.8. 
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ith a k = λk (u )d u . Notice that d(·, ·) t ake s value s on
0,1]. If d(λk , λk+1 ) ≈ 0 , then λk ≈ λk+1 (sm all ch ange).
f d(λk , λk+1 ) = 1 , the n λk a nd λk+1 h av e dis j oint domain s
la rge cha nge). In our sim ulation, w e c onside r diffe re n t val -
es of d, varying from small to large magnitude changes (see
eb Figure 1 ) alongside varying m and n . 
To estimate the intensity functions for each simulation, we use

he qua n tile-bas ed me thod to p l ace the knots and s e t P = 5 as
he n umbe r of basi s functions in ( 1 ). Thi s value i s sele cte d base d
n the AIC cr iter ion (Sect ion 3.4 ). Each simulat ion set is repli-
ated 500 times. 

4.2 Accuracy on detecting cha ng epoints 
e simulate data with a single cha ngepoin t to look at detection

 ccura cy. We consider sample sizes n = 4 , 10 , 20 . Thes e s am-
le sizes are small to illustrate the perform anc e of our method
 nd results a re expe cte d to improv e as n grows . For the ROC
urves (Figure 2 ), false positive rates (FPr) are calculated from
o cha ngepoin t sim ul ation s and true positive ra tes (TPr ) fr om
ata with a single cha ngepoin t at n/ 2 . ROC curves are obtained
 y va rying the pe nalty (thresho ld) v alue for the de tection of a
hange. 
For no cha ngepoin ts, we sim ulate { N i (t ) } with in te nsity func-

ion λ0 (t ) ( 8 ) with μ0 = 3 . For one cha ngepoin t, the firs t
egme n t N 1: n/ 2 has in te nsity function λ0 (t ) , a nd the se c ond
egme n t N (n/ 2+1): n has in te nsity function λ1 (t ) , where μ1 =
 , 4 . 5 , 5 , 5 . 5 , 6 , 6 . 5 , 7 , 8 . For these values of μ1 , the dis ta nce
(λ0 , λ1 ) is 0 . 11 , 0 . 17 , 0 . 22 , 0 . 28 , 0 . 32 , 0 . 37 , 0 . 42 , 0 . 52 , re-
pe ctiv ely. 

The left panel of Figure 2 shows the results when the s amp le
ize is n = 4 . Cha nges a r e accura t ely det ect ed except for d =
 . 11 and 0.17. This is expe cte d sinc e the m agnitude of ch ange is
m all, c ouple d with a small s amp le si ze. Desp ite this, we can con-
lude that for n = 4 , our method has good overall perform anc e.
ncreasing the s amp le size acros s periods impr oves r esults for
ll change magnitudes. For example, for d = 0 . 11 , for n = 10 , a
.05 FPr corresponds to a 0.52 TPr. Whereas for n = 20 , a 0.05
Pr corresponds to a 0.78 TPr. 
In conclusion, for small change magnitudes ( d = 0 . 11 or

.17), our method performs well for n la rge r tha n 10. If the m ag -
itude of changes is moderate or large ( d ≥ 0 . 22 ), the perfor-
 anc e of our method is good even if the n umbe r of pe riod s i s as
mall as n = 4 . 

4.3 Accuracy of cha ng ep oint p ositions 
urning to estim ate d ch a ngepoin t positions, we simulate data
ith n = 24 , 50 , 100 , 200 , and m = 2 , 3 , 6 , 12 cha ngepoin ts.
or each value of m , we define the cha ngepoin t locations
1: m 

as fixed proportions (floors) of the n umbe r of pe riods
 : (0.2,0.6), (0.6,0.7,0.8), (0.12,0.25,0.45,0.6,0.75,0.9), and
0.09,0.18,0.23,0.36,0.4,0.5,0.57,0.65,0.72,0.78,0.83,0.9) for
 = 2 , 3 , 6 , and 12, respe ctiv ely. Thes e proportion s contain
 v arie ty of short and long s egme n ts. The s malle s t segme n t
as one data point and corresponds to the case m = 12 and
 = 24 , the la rges t segme n t con tains 120 poin ts a nd cor-
esponds to the sc en ario m = 3 and n = 200 . Given n and
1: m 

, we simulate I H PPs { N 1: τ1 , . . . , N τm −1 : τm } , where the
egme n t N τk−1 : τk has in te nsity function λk . As before, we con-
ide r in te n sity function s s uch th at d(λk−1 , λk ) is c ons ta n t for
ll k = 1 , . . . , m . We use d = 0 . 17 , 0 . 22 , 0 . 28 , 0 . 32 , 0 . 42
nd for each value, we define { λ0 , . . . , λm 

} using com-
inations of μk in ( 8 ), such that d(λk−1 , λk ) = d, for
 = 1 , . . . , m . For example, for m = 3 and d = 0 . 22 ,
e define (μ0 , μ1 , μ2 , μ3 ) = (6 , 7 . 9 , 9 . 8 , 11 . 8) . Then,
 e estim ate m and { τi } i =1 , ... , ̂  m 

for each d atas e t simu-
ate d. The pen alty β is define d as β = ( P + 1) log ( n )
S IC pen alty). 
We expect an increase in detection a ccura cy for la rge r d.

able 1 shows the ave rage n umbe r of cha ngepoin ts c orre ctly es-
im ate d, and Table 2 shows the average number of false positiv es .

For Table 1 , we say that τk is corr ectly estima ted if a change-
oint is estim ate d in the interval (τk − log n, τk + log n ) , k =
 , . . . , m . Thi s i s a w indow w idth of 6.3,7.8,9.2,10.5 for n =
4 , 50 , 100 , 200 respe ctiv ely. The log (n ) choic e is due to the
est theoretical rate for consis te ncy of cha ngepoin t detection
l gorithms ( Tick le et al ., 2020 ). If one in te rval in te rsects a n-
the r in te rval, the n the le ngth of the in te rv als invo lved is reduced
 qually s uch th a t ther e is no longe r in te rs ection . If more than one
ha ngepoin t is es tim ate d in the in te rval, one is a true positive,
 nd the re mainde r false positiv es . Ch a ngepoin ts es tim ate d more
han log n points from the closest true changepoint are c ounte d
s false positiv es . Table 2 , s umm arize s both type s of false posi-
iv es (se e Web Table 1 for the sp lit v alues). In Tab le 1 , we w a n t

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
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TAB LE 1 Av e rage n umbe r of true positiv es ov e r 500 sim ul ation s. 

d = 0 . 17 d = 0 . 22 d = 0 . 28 d = 0 . 32 d = 0 . 37 d = 0 . 42 

m = 2 

n = 24 (8) 0.56 1.36 1.79 1.98 2.00 2.00 
n = 50 (16) 1.41 1.80 1.94 2.00 2.00 2.00 
n = 100 (33) 1.77 1.90 1.98 2.00 2.00 2.00 
n = 200 (66) 1.68 1.86 1.96 2.00 2.00 2.00 
m = 3 

n = 24 (6) 1.29 1.69 2.29 2.67 2.94 3.00 
n = 50 (12) 1.56 2.39 2.86 2.94 2.99 3.00 
n = 100 (25) 1.57 2.67 2.87 2.96 3.00 3.00 
n = 200 (50) 1.80 2.80 2.85 2.95 3.00 3.00 
m = 6 

n = 24 (3) 2.01 2.24 2.57 3.14 4.37 5.17 
n = 50 (7) 2.23 3.38 4.34 5.40 5.98 6.00 
n = 100 (14) 3.14 5.03 5.84 5.96 6.00 6.00 
n = 200 (28) 4.79 5.47 5.80 5.94 6.00 6.00 
m = 12 

n = 24 (2) 1.16 3.10 3.94 4.16 4.77 5.45 
n = 50 (3) 3.73 4.26 4.82 5.51 7.16 8.38 
n = 100 (7) 4.35 5.37 6.64 8.23 10.94 11.56 
n = 200 (15) 6.31 8.95 10.94 11.62 12.00 12.00 
In pa re n thesis, the ave rage segme n t le n gth for ea ch sc en ario is indicated. Overall, as d or n grows, the result improv es . 

TAB LE 2 Av e rage n umbe r of false positiv es ov e r 500 sim ul ation s. 

d = 0 . 17 d = 0 . 22 d = 0 . 28 d = 0 . 32 d = 0 . 37 d = 0 . 42 

m = 2 

n = 24 (8) 0.04 0.02 0.05 0.07 0.13 0.14 
n = 50 (16) 0.19 0.28 0.45 0.45 0.41 0.51 
n = 100 (33) 0.85 1.34 1.72 1.57 1.48 1.66 
n = 200 (66) 2.86 3.78 4.24 3.88 3.55 3.66 
m = 3 

n = 24 (6) 0.06 0.04 0.03 0.04 0.07 0.25 
n = 50 (12) 0.50 0.24 0.33 0.35 0.40 0.67 
n = 100 (25) 1.75 1.30 1.55 1.84 1.55 1.86 
n = 200 (50) 4.62 3.81 4.27 5.09 4.07 4.12 
m = 6 

n = 24 (3) 0.00 0.01 0.00 0.00 0.00 0.01 
n = 50 (7) 0.05 0.06 0.04 0.03 0.04 0.10 
n = 100 (14) 0.34 0.32 0.27 0.25 0.33 0.69 
n = 200 (28) 1.28 1.47 2.12 2.28 1.92 2.86 
m = 12 

n = 24 (2) 0.00 0.00 0.00 0.00 0.00 0.00 
n = 50 (3) 0.00 0.00 0.00 0.00 0.00 0.01 
n = 100 (7) 0.02 0.02 0.01 0.01 0.01 0.19 
n = 200 (15) 0.78 0.32 0.19 0.56 0.30 1.12 
In pa re n thesis, the ave rage segme n t le n gth for ea ch sc en ario is indicated. Overall, the method does not produce too many false positives. 
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̂ m to be close to m and o bs erv e th a t, as d and n gr ow, the r esult
improves for all values of m . Recall the use of small s amp le sizes
here to demonstrate the limits of our approach. 

Let us analyze the result for each sce na rio in more detail. For
m = 2 , we o bs erve that the true cha ngepoin ts a r e corr ectly es-
tim ate d in almost all cases of different s amp le sizes and m ag -
nitude of ch anges, exc ept for n = 24 with d = 0 . 17 . The rea-
son may be the s amp le size of the first segment, which is four,
since if the segme n t sa mple size increases to ten ( n = 50 ), the
result ge ts be tter. We o btain the s ame conclusion s for m = 3
and m = 6 . If s ome of the s egme n t sa mple sizes on the data are
sm aller or e qual t o t en (eg, m = 3 and n = 100 ), half of the
true cha ngepoin ts ca n be mis s e d when the m agnitude of ch ange 
is s mall, d = 0 . 17 . The re sult improve s if the segme n t sa mple
sizes increase or if the magnitude of change increases. For exam- 
ple, n = 200 and d = 0 . 22 , the average number of c orre ctly es-
t imat ing the true cha ngepoin ts whe n m = 3 is 2.80, and when 

m = 6 is 5.47. Now, let us analyze the sc en ario with m = 12 

cha ngepoin ts. In this case, the method has a poor pe rforma nce 
when n = 24 and 50; this is mainly because the segme n t sa mple 
sizes vary from 2 to 7. At n = 100 , w e h av e a good pe rforma nce
with a magnitude of change d ≥ 0 . 38 . Results improve when 

n = 200 , eg, on average 8.95 true cha ngepoin ts a r e corr ectly 
estim ate d with magnitude of change d = 0 . 22 and 10.94 with 
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 = 0 . 28 . In the la t te r sce na rio, the s malle s t segme n t sa mple size
s 10. 

To s umm arize Tab le 1 , our me thod h as good perform anc e in
ll cases where the segme n t con tains “e nough” o bs erv ation s for
he size of change in each sc en ario. Base d on our single change-
oin t sim ulation s tudies, tha t is, a t least 10 o bs erv ation s for each
egme n t for small values of d (a complex sc en ario) and around 5
 bs erv ation s for medium values of d. 
Now, let us analyze the results for Table 2 . We describe the re-

 ults ac c ording to the s amp le sizes . We h av e th at, for n = 24 and
0, the average false positives are less than 0.67 for all dis ta nces
nd all values of m . Spec i fically, oc casion ally only one false posi-
ive is o bs erved. 

For n = 100 , we o bs erv e th at, for m = 2 a nd 3, on ave rage,
etw e e n 0.85 a nd 1.86 false positives are o bs erv e d. Spe c i fically,
ost of the time, we o bs erv e d one false positive and s ome times

wo false positives for all dis ta nc es . For m = 6 and 12, the av-
 rage n umbe r of fal se positives i s less th an one. Fin ally, for n =
00 , for m = 2 , 3 , and 6, the ave rage n umbe r of false positives
aries from 1.28 to 5.09, being m = 3 the sc en ario where more
alse positives are observ e d (on av erage 4 or 5). While for m =
2 , freque n tly only one and very occasionally two false positives
re o bs erv e d. 
Ove rall, for sa mple sizes n = 24 , 50 , and 100, we o bs erve 1 or
 false positives on average for all values of m and all dist ance s.

hereas for n = 200 , we obtain around 3 to 5 false positives on
verage with m = 2 and m = 3 , tw o on av erage with m = 6 , and
round 1 with m = 12 . Bas ed on thes e res ults and giv en the c om-
lexity of the cases, we think that our method performs well. 
In add ition, Web Fig ure s 2 and 3 pre se n t boxp lots of the v alues

f ̂  m his togra ms of the ̂  τ value s, re spe ctiv ely. Ov erall, c ompare d
ith the r esults fr om s cal ar d ata, the me thod is s en sitiv e to sm all

ha nges a nd does not produc e too m any FPs . 

5 DA  TA  A P P L I C A T I O N  

n this se ction, w e an alys e s en s or d ata measuring d aily activ-
ty using the approach described in Section 3 . In the following,

e only prese n t the results for one pers on . Web Appendix C
rese n ts two more analyses of two diffe re n t people. 

5.1 Data des criptio n 

a ta ar e obtained fr om H owz (H owz, 2024 ), and they r epr e-
e n t se nsor act ivat ions by a single older person living in a house.
he s en s ors a re tri gge red whe n a ny move me n t is det ect ed, eg,

n the be droom, h allway, kitchen, ba thr oom, and living r oom.
n addition, the s en s ors capture spec i fic act ivit ies tha t ar e per-
ormed around the house, eg, using a kettle, a t oast er, and a mi-
rowave, ope ning the frid ge door, the back door, the front door,
nd the main door. These sensors re c ord the time they a re acti -
ated for 61 days. Figure 1 (top left) shows 6 days of the raw data.

e ass ume th a t ther e is no w e ekend effe ct. Thi s i s reas onab le as
hese ar e r etir ed adults who have a similar routine every day of
he w e ek (se e also Web Appendix C.2 for a just ificat ion of this
ssumption). 
D ete cting ch ange s is import a n t since it allows us to detect po-

e n ti al health pro b lem s . In norm al c ond itions, a per son is ex-
 t  
e cte d to perform their regular routines. For examp le, w aking up,
aving breakfast, lunch, and dinner around the same time every
 ay. If one d ay the waking up is pushed back by 30 or 60 min, or if

he person skips some regular routines, then this is a ch ange. D e-
ending on the change, it could be int erpret ed as an indicator of
os sib le health pro b lem s, and our goal is to de tect thes e changes.
hi s i s challeng ing because of the inhe re n t pe riodicity compo-
e n t of the data (24 h periodicity). Taylor et al. ( 2021 ) assumes

ha t da ta ar e Be rnoulli time se ries a nd dete cts ch a nges a round
he circular axis . Ch anges dete cte d are within period, eg, wake-
p time s. The se change s cannot be used as an indicator of pos-
ible health proble ms. Ins tead, w e c onside r ide n tifying cha nges
cros s d ays . To achiev e this goal, w e ass ume th at the n umbe r of
ct ivit ies for each day is a r ealiza tion of an IHPP (top ri gh t plot
f Figure 1 ). Note that the n umbe r of act ivit ies per day is va ri -
ble; 29 is the minimum, 120 is the maxim um, a nd 70.43 is the
v erage. Sinc e re gul ar d ai ly routines wi l l h av e simil ar s en s or acti-
 ation s, it is natural to ass ume th at they wi l l h av e the sa me in te n-
ity function. Whereas if there is a change in the regular routines,
he corresponding in te nsity function should be diffe re n t. 

5.2 Mo del sp eci ficat ion s 
e assume the model spec i fication as given in Section 2 with

 = 1 , . . . , 61 days, and t ∈ [0 , 24] . For model di agnostic, s ee
eb Appendix C.1 . 
We segme n t this seque nce a ccordin g to its in te n sity function s.
e r epr ese n t the in te nsity functions as in ( 1 ), with { ψ p (t ) } be-

ng c ubic B-spl ine basis functions . We note th at other basis func-
ions could be used here. Based on the AIC cr iter ion, we s e t
 = 5 . Fin ally, w e define β , the pen alty incurre d when introduc-

n g a chan gepoint, as β = 6 log (61) (S IC pen alty). This pen alty
onsiders the number of paramet ers t o be estim ate d when intro-
ucing a new in te nsity function and the s amp le size. Whilst this
 ta nda rd pe n alty w orks w ell for this application, it m ay not w ork
n all app lication s. Ther e ar e several approaches to penalty se lec -
ion within the cha ngepoin t lite ra tur e with tw o c ommon dat a -

drive n a pproaches. The firs t is the “elbow” a pproach common
n, e g, choic e of si gnifica n t principal compone n ts, one plots the
 umbe r of cha ngepoin ts sele cte d agains t the pe nalty pa ra mete r
nd looks for the “elbow” in the curve ( Lavielle , 2005 ). This ap-
roach works better for signals with a larger number of change-
oints to populate the curv e. A se c ond approach inspired by
 upervise d clustering uses labe led dat a (Hocking et al., 2020 ).
e re, segme n ts of data are labeled as “contains a cha ngepoin t”

r “no cha ngepoin t,” a nd a pe nalty is chose n which bala nces e n-
 uring th at the former se gme n ts con tain a cha ngepoin t a nd the
a t ter do not. Naturally, this requires a sizeable set of labeled data
o provide a s en sib le choice. 

5.3 Results 
pp lying our me thod, we o bt ain ̂  m = 2 change points at 5, and
5. Th at is, the se gme n tation is N 1:5 , N 6:35 , a nd N 36:61 . Fi gure 1
hows the segme n tation, a nd Fi gure 3 (first row) shows the three
iffe re n t in te n sity function s of the Pois s on proces s es for each
egme n t. 

The fir st d ifferenc e w e o bs erve in the s egme n ts is the diffe r-
 n t n umbe r of act ivit ie s throu ghout the da y. I n the firs t segme n t,
he person is much more active than in the second segme n t. The

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae114#supplementary-data
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FIGURE 3 First row: Intensity function of each segme n t. The maximum of ̂  λ0 , ̂  λ1 , and ̂

 λ2 are attained around 11 am, 8 am, and 9 am, 
respe ctiv ely. Se c ond row: H ist o gram s of event times for the three segme n ts. The n umbe r of act ivit ies are grouped per hour. 
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n umbe r of act ivit ie s then increase s again in the third segme n t.
These ov erall ch ang es are cle arly o bs erv e d in the plots shown in
Figure 3 . Let us take a closer look at the diffe re nc e betw e en tw o
con s ecutive s egme n ts. For this, we prese n t his togra ms in Fi g-
ure 3 (se c ond row), which show the proportion of daily eve n ts
within a segme n t a nd grouped pe r hour. We o bs erv e d th at activ-
ities are c onc entrate d from 7 am to 1 pm for segment one, with
peaks at 8 and 12. Thus, the maximum of ̂  λ0 is at around 11 am.
Whereas for segment two, act ivit ies are c onc entrate d from 7 am
to 9 am and 12 pm. This gives the maximum of ̂  λ1 around 8. 

The othe r si gnifica n t diffe re nc e betw e en se gme n t one a nd se g -
me n t two is there ar e pr oportiona tely mor e act ivit ies around 10
o’clock in segme n t 1. We ca n c onclude th at , af ter 5 days, this
pers on decreas ed their activity and also ch ange d their beh avior,
spec i fically at hours 10 am and 1 pm . Now, le t us compare se g -
me n ts two and three. In segme n t three, act ivit ies increase again.
In these two segme n ts, the pe rson has the same morning rou-
tine a nd cha nge s a fter midda y. I n segme n t 2, afte rnoon, the pe r-
s on’s activity decreas es dras tically a nd the n re main s rel atively
cons ta n t, with a sli gh t peak at 5 and 10 pm. In terms of the in te n-
sity function, this r epr ese n ts a steady slope after the maximum
value is reached, as we can appr ecia te in Figur e 3 (first row, mid-
dle plot). On the other hand, in segment 3, we o bs erve more of
an increase in activity after 2 pm . This remain s rel ativ ely c on-
s ta n t un til 6 pm. Thi s i s a more uni for m decline after the peak
in the in te n sity function . For s egme n ts two a nd 3, w e c onclude
th at the m ain diffe re nce is the act ivit ie s in the a fternoon . In s e g -
me n t 3, more act ivit ies a re pe rformed from 2 pm to 6 pm than in 

segme n t 2. 
Fin ally, w e v erifie d with Howz if these tw o dete cte d ch anges 

ar e r ela t ed t o their findings . Upon vis ual inspe ction by Howz, 
2 out of 4 other metrics that Howz uses would signal the 
firs t cha ngepoin t, with a furthe r metric cha n gin g at the se c ond
cha ngepoin t. More spec i fically, the second cha ngepoin t a ppea rs 
to be driven by a change in the time of their s ta rt- of- day whilst 
the first is by a change in their end- of- day routines. 

From a me dical viewpoint, ch anges in daily act ivit ies may be 
r ela t ed t o eg, memory loss or fatigue, since these may cause a 
person to skip some daily routine activities. When a change is 
det ect ed in the d atas e t, the company contacts the person to ask 
s ome question s . If ne c es s a ry, the pe rson i s advi s ed to s e ek me d-
ical advice. In ge ne ral, cha ngepoin t de tection me thods and con- 
tinuous monitoring of daily act ivit ies can help a person’s well- 
being and enh anc e care and support. It also supports the older 
per son’s abil ity to main tain a n indepe nde n t living. 

6 CO N C LU S I O N A N D  D I S C U S S I O N 

An importa n t is sue tod ay is the developme n t of new tech- 
no lo gies and me thodo lo gies to support indepe nde n t living a nd 

he althy ag eing of o lder peop le. In-home s en s ors are uno btrusive 
a nd future-orie n te d in c olle cting data th at can be use d to study
beh avioral ch anges . Tra ckin g behavior chan ges pro vides a valu- 
able monit oring t ool. Along this line, we have proposed a new 
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pproach to model and dete ct ch anges in s en s or d ata measuring
aily activity. 
Our approach ass umes th at ch a nges within a day a re pa rt of a

ers on’s d aily routine and focus e s on change s acros s d aily behav-
or. We ass ume th at the s e t of eve n t times within a give n day is a
ingle o bs erv ation . This o bs erv a tion is r epr ese n ted b y a con tin-
ous temporal proc ess . Then, our ch ange point mode l is defined
n the se quenc e of temporal proces s es . Here, w e use d B-spline
asis functions to r epr ese n t the daily proce sse s . How ev er, note
hat other basis functions (eg, Fourier, w avele ts) could be used
s appr opria te for a given app lication, especi ally if con tin uity at
he s ta rt/e nd of each d ay is desirab le. 

Our a pproach ca n be exte nded in diffe re n t dire ctions . For ex-
 mple, one ca n clus te r the seque nce of proces s es ac c ording to
iffe re n t ala rm lev els (h abitual beh aviors, nonh abitual beh avior,
 tc.). Als o, it allows us to focus on spec i fic periods or in te rvals of
ime—for examp le, d aily, w e ekly or ni gh t time r outines. If da ta
s c olle cte d a t differ ent houses, we could also clus te r hous eho lds
sing the individual in te n sity function s . More ov e r, our a pproach
an combine data from diffe re n t sources a nd at diffe re n t reso-
utions. Anothe r exte nsion would be to use Cox proce sse s or

awke s proce s s es in stead of I H PPs; one ne e ds “only” to ch ange
he cost function, but this could involve computational chal-
e nges. Alte rn ativ ely, w e c ould c onside r m ultiva ria te pr oce sse s
including spatial structure). For examp le, each s en s or can be
odeled by a point process, and then changes can be det ect ed in

he m ultiva riate poin t proc ess . Again, one c ould extend the pro-
os ed me thod by modifying the cost function. All these possible
xten sion s are left for future work. 
A limitation of the method is that it requires o bs erving a whole

e riod. For exa mple, if a pe riod r epr ese n ts 24 h, data c olle cte d
n til mid -day ca nnot be use d sinc e w e wi l l not be able t o estimat e

he in te n sity function . Another limita tion is tha t the pr oposed
ethod r equir es a “l arge” s amp le size to de te ct sm all ch anges .

or example, from Figure 2 with d = 0 . 11 , a s amp le size big-
e r tha n 20 is ne e de d to ac curat ely det e ct a ch a ngepoin t with

ower false positive rate s. Althou gh thi s i s a v ery sm all ch ange
see Web Figure 1 ), and in this cas e, any me thod wi l l r equir e a
 arge s amp le size to obtain accura te r es ults . A mor e r ealistic small
h ange w ould be d = 0 . 17 ( d = 0 . 22 ); in this cas e, the me thod
 equir es a s amp le si ze b i gge r tha n 10 (6) t o accurat ely det ect a
ha ngepoin t with a lower false positive ra te (ar ound 0.05). Thus,
 e re c omme nd the use r s e t the minimum size of a s egme n t ac-

ording to the context (this is an argument in the R function that
 stimate s m and τ). 
We conclude that our me thodo lo gy pres e n ts a v aluab le alter-
 ativ e to detect change points when data are a se quenc e of point
roces s es . The c orresponding R c ode to estimate the change-
oints wi l l be avai lable as part of the cha ngep o i nt R package (Kil-

ick et al., 2022 ). A lter n ativ ely, R c ode can be found on the au-
hor’s GitHub. 
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